Skip to main content
Log in

A new method for the analysis of transmission property in carbon nanotubes using Green’s function

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new method for the analysis of electron transmission property in single-walled carbon nanotubes (SWCNTs) using Green’s function is presented in this paper for the first time. Using the proposed method, a new relation for the transmission function through a deformed SWCNT is obtained, which depends on the energy variations and the coupling matrices related to the mechanical deformations applied to the structure of CNT. The obtained new relation is explained by the presented results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Javey, J. Kong (eds.), Carbon Nanotube Electronics (Springer, Berlin, 2009)

    Google Scholar 

  2. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2004)

    Google Scholar 

  3. C.P. Poole, F.J. Owens, Introduction to Nanotechnology (Wiley, New York, 2003)

    Google Scholar 

  4. D. Fathi, B. Forouzandeh, Time domain analysis of carbon nanotube interconnects based on distributed RLC model. NANO 4(1), 13–21 (2009)

    Article  Google Scholar 

  5. D. Fathi, B. Forouzandeh, A novel approach for stability analysis in carbon nanotube interconnects. IEEE Electron Dev. Lett. 30(5), 475–477 (2009)

    Article  Google Scholar 

  6. D. Fathi, B. Forouzandeh, S. Mohajerzadeh, R. Sarvari, Accurate analysis of carbon nanotube interconnects using transmission line model. Micro Nano Lett. 4(2), 116–121 (2009)

    Article  Google Scholar 

  7. R. Dehbashi, D. Fathi, S. Mohajerzadeh, B. Forouzandeh, Equivalent left-handed/right-handed metamaterial’s circuit model for the massless Dirac fermions with negative refraction. IEEE J. Sel. Top. Quantum Electron. 15(5), 1–7 (2010)

    Google Scholar 

  8. L. Yang, J. Chen, J. Zhang, J. Zhang, Quantum transport through finite length double-walled carbon nanotubes. Phys. Status Solidi (b) 243(6), 1306–1313 (2006)

    Article  ADS  Google Scholar 

  9. P.A. Orellana, M. Pacheco, Photon-assisted transport in a carbon nanotube calculated using Green’s function techniques. Phys. Rev. B 75(11), 115427 (2007)

    Article  ADS  Google Scholar 

  10. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  11. H. Bruus, K. Flensberg, Many-body Quantum Theory in Condensed Matter Physics: An Introduction (Oxford University Press, New York, 2009)

    Google Scholar 

  12. S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  13. L. Yang, J. Han, Electronic structure of deformed carbon nanotubes. Phys. Rev. Lett. 85(1), 154–157 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  14. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, P.L. McEuen, Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90(15), 156401 (2003)

    Article  ADS  Google Scholar 

  15. J. Cao, Q. Wang, H. Dai, Electromechanical properties of metallic, quasimetallic, and semiconducting carbon nanotubes under stretching. Phys. Rev. Lett. 90(15), 157601 (2003)

    Article  ADS  Google Scholar 

  16. R. Moradian, A. Fathalian, Investigation of superconductivity in the single-walled carbon nanotubes. J. Phys. Chem. Solids 69(10), 2589–2593 (2008)

    Article  ADS  Google Scholar 

  17. A. Kleiner, S. Eggert, Band gaps of primary metallic carbon nanotubes. Phys. Rev. B 63(7), 073408 (2001)

    Article  ADS  Google Scholar 

  18. L. Chico, L.X. Benedict, S.G. Louie, M.L. Cohen, Quantum conductance of carbon nanotubes with defects. Phys. Rev. B 54(4), 2600–2606 (1996)

    Article  ADS  Google Scholar 

  19. H.J. Choi, J. Ihm, Ab initio pseudopotential method for the calculation of conductance in quantum wires. Phys. Rev. B 59(3), 2267–2275 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Fathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi, D., Forouzandeh, B. & Sarvari, R. A new method for the analysis of transmission property in carbon nanotubes using Green’s function. Appl. Phys. A 102, 231–238 (2011). https://doi.org/10.1007/s00339-010-5909-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-5909-4

Keywords

Navigation